Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato.

نویسندگان

  • Wolfgang Moeder
  • Cornelius S Barry
  • Airi A Tauriainen
  • Christian Betz
  • Jaana Tuomainen
  • Merja Utriainen
  • Donald Grierson
  • Heinrich Sandermann
  • Christian Langebartels
  • Jaakko Kangasjärvi
چکیده

We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-beta-glucuronidase fusion construct, beta-glucuronidase activity increased rapidly at the beginning of the O(3) exposure and had a spatial distribution resembling the pattern of extracellular H(2)O(2) production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H(2)O(2) production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H(2)O(2) production, in regulating the spread of cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato.

1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of the hormone ethylene and is encoded by a multigene family containing at least eight members in tomato (Lycopersicon esculentum). Increased ethylene production accompanies ripening in tomato, and this coincides with a change in the regulation of ethylene synthesis from auto-inhi...

متن کامل

Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants.

Both ethylene and the enzymes of ethylene synthesis are subjects of intensive scientific investigation. The present review discusses structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, identified for the first time in ripening tomato in 1979. This enzyme is responsible for the conversion of S-adenosyl-L-methionine to 1-aminocyclopropane-1-...

متن کامل

Regulation of ethylene biosynthesis in response to pollination in tomato flowers.

Pollination of many flowers leads to an increase in ethylene synthesis and flower senescence. We have investigated the regulation of pollination-induced ethylene synthesis in tomato (Lycopersicon esculentum) using flowers of the dialytic (dl) mutant, in which pollination can be manipulated experimentally, with the aim of developing a model system to study tomato flower senescence. Ethylene synt...

متن کامل

Ethylene regulates the susceptible response to pathogen infection in tomato.

Ethylene evolution occurs concomitantly with the progression of disease symptoms in response to many virulent pathogen infections in plants. A tomato mutant impaired in ethylene perception-Never ripe-exhibited a significant reduction in disease symptoms in comparison to the wild type after inoculations of both genotypes with virulent bacterial (Xanthomonas campestris pv vesicatoria and Pseudomo...

متن کامل

Differences in the kinetics and scale of signalling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid.

Hydrogen peroxide (H(2)O(2)), ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid (SA) concentrations and ACC synthase (ACS) gene expression were measured to establish whether the high sensitivity of the Populus deltoides x maximowiczii clone Eridano to ozone (O(3)) exposure, compared with the O(3)-resistant Populus deltoides x euramericana clone I-214, is attributable to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 130 4  شماره 

صفحات  -

تاریخ انتشار 2002